
Abstraction Layered Architecture: Writing
Maintainable Embedded Code

John Spray1 and Roopak Sinha2

1 Tru-Test Group, Auckland, New Zealand
john.spray@trutest.co.nz

2 Department of Information Technology & Software Engineering
Auckland University of Technology, Auckland, New Zealand

roopak.sinha@aut.ac.nz

Abstract. The brisk pace of the growth in embedded technology de-
pends largely on how fast we can write and maintain software contained
within embedded devices. Every enterprise seeks to improve its produc-
tivity through maintainability. While many avenues for improvement ex-
ist, highly maintainable code bases that can stay that way over a long
time are rare. This article proposes a reference software architecture
for embedded systems aimed at improving long-term maintainability.
This reference architecture, called the Abstraction Layered Architecture
(ALA), is built on the existing body of knowledge in software architecture
and more than two decades of experience in designing embedded soft-
ware at Tru-Test Group, New Zealand. ALA can be used for almost any
object-oriented software project, and strongly supports domain-specific
abstractions such as those found in most embedded software.

Keywords: software architecture, maintainability, readability, reusabil-
ity, embedded software, embedded systems

1 Introduction

Tru-Test Group (henceforth, Tru-Test) is a New Zealand based company which
manufactures numerous embedded solutions for livestock management, with
many code bases existing for well over 20 years. A closer inspection of these
code bases revealed useful insights into how some architectural practices can
lead to better maintainability and lower complexity. While many code bases at
Tru-Test gradually unravelled into big balls of mud [5] and some of these had
to be abandoned, a few non-trivial examples thrived despite ongoing long-term
maintenance. In fact these software parts had undergone regular maintenance
for many years with almost trivial effort. Our perception was that they were two
orders of magnitude easier to maintain than our worst code bases. This paper
reports our attempt to uncover what makes software more maintainable, and
to then integrate our findings into a reference architecture that can be used for
future development.



It is said that 90% of commercial software is under maintenance [13], so
any improvements here can provide high rewards. Maintainable software is eas-
ier to update and extend, which helps a company’s profitability by reducing
ongoing software development costs. A review of maintainable code bases at
Tru-Test found that the many accepted software engineering best practices were
helpful but not sufficient by themselves. Code-level practices (like clear nam-
ing, appropriate commenting, coding conventions, low cyclomatic complexity,
etc.), module-level practices (encapsulation, programming to interfaces, etc.)
and design-level practices (separation of concerns using design patterns like de-
pendency injection, using object-oriented design, etc.) are all useful. However,
individually they concern themselves with relative micro-structures within soft-
ware code. The more maintainable code bases also featured robust in-the-large
architectures. This paper focuses on architecture level interventions, which relate
to high-level design decisions, structures, and constraints that, if followed, can
achieve measurable improvements in maintainability.

For a developer already juggling a large set of requirements, quality attributes
and deadlines, coming to a solution that also satisfies a large set of principles
is often impossible. We hypothesize that it is possible to emerge a reference
architecture that satisfies the principles of maintainable software without know-
ing the requirements, and that using this reference architecture is significantly
easier than trying to satisfy all the maintainability and complexity principles
concurrently. This hypothesis was broken into three research questions, as fol-
lows, leading to the main contributions of this article:

RQ1 What are the key system, sub-system and code-level practices that improve
maintainability? This sets the foundation for this work - we reuse and build
on existing insights into writing maintainable software and consciously and
deliberately avoid inventing new names for known terms. Sec. 2 provides a
summary of these principles for writing maintainable code.

RQ2 How, and to what extent, can the practices identified in RQ1 be used to
emerge a reference architecture? This part of the research involves the cre-
ation of a reference software architecture that optimises maintainability and
complexity. The creation of this proposed architecture, called abstraction
layered architecture (ALA) is covered in Sec. 3.

RQ3 How can we evaluate the impact of the architecture proposed in RQ2 on
maintainability? We test the impact of ALA on software maintainability
through both a re-architecting of the code base of an existing commercial
product from Tru-Test, and through the addition of more features to the
product. ALA shows measurable improvements in maintainability relating
to all its sub-characteristics as listed by ISO/IEC 25010. The evaluation
phase is described in Sec. 4.

2 Principles for Writing Maintainable Software

The principles listed in this section may not constitute an exhaustive list, but
have been found to be the most important for writing maintainable software.



These principles were identified primarily through an internal review of all code
bases at Tru-Test for identifying the key qualities of code-bases that remained
robustly maintainable over the long-term. We also carried out a subsequent
literature search for identifying design and development techniques and practices
useful for writing maintainable code. At the conclusion of these investigations,
we identified the following principles, which are listed in no particular order.

P1–The first few strokes: Christopher Alexander, the creator of the idea of
design patterns in architecture states, “As any designer will tell you, it is the
first steps in a design process which count for the most. The first few strokes
which create the form, carry within them the destiny of the rest.” [1].

The primary criteria for logically decomposing a system into discrete parts
is well known to have a high impact on maintainability [10]. An ”Iteration Zero”
(the first Agile iteration) is needed to create the primary decomposition. It will
not emerge from refactoring.

P2–Abstraction: Ultimately the only way of achieving knowledge separation is
abstraction [14]. An abstraction is the brain’s version of a module. It is the means
we use to make sense of an otherwise massively complex world and it is the only
means of making sense of any non-trivial software system. A great abstraction
makes the two sides completely different worlds. A clock is a great abstraction.
On one side is the world of cog wheels. On the other someone trying to be on
time in his busy daily schedule. Neither knows anything about the details of
the other. SQL is another great abstraction. On one side is the world of fast
algorithms. On the other is finding all the orders for a particular customer. How
about a domain abstraction, the calculation of loan repayments. On one side, the
world of mathematics with the derivation and implementation of a formula. On
the other the code is about a person wanting to know if they can afford to buy
a house. If abstractions do not separate two different worlds like this, then we
are probably just factoring out common code. We need to find the abstraction
in that common code, and make it separate out something complicated which is
really easy to use, like a clock.

P3–Knowledge Dependencies: The dependencies that matter are “knowl-
edge dependencies” [3], not runtime dependencies [9]. Knowledge dependencies
occur at code design-time (code read time, code write time). In order to under-
stand and maintain a module, what knowledge do you need? Run-time depen-
dencies are not important - they can go in any direction, and be circular. Often
runtime dependencies in code are implemented as knowledge dependencies, de-
stroying the abstractions.

P4–Zero Coupling: The concepts of coupling and cohesion have been studied
extensively in literature [12]. A common misconception is that, because compo-
nents in a system must interact to do anything useful, they must, at the least,
be loosely coupled. The confusion arises from the use of the words ’dependency’,
or ’uses’ for both runtime and design-time (knowledge) dependencies as noted
in P3. It is important that runtime dependencies are always implemented com-
pletely inside an abstraction. For example, let’s say abstractions A and B will
exchange data at runtime. There must be an abstraction C that knows about



the runtime dependency, and, for example, instantiates A and B and uses de-
pendency injection to connect them. A and B must know zero about each other.
Not only do A and B remain mutually zero coupled, the knowledge inside C
is also mutually zero coupled with the knowledge inside both A and B. The
only coupling remaining is the necessary knowledge coupling inside C on the
abstractions A and B.

P5–Composition not Collaboration: In the example in P4 above, C is a
composition of A and B. Ultimately, composition is the only necessary relation-
ship between abstractions of an architecture. Often architectures are described
with components and connectors. The connector is often a runtime dependency.
Thinking of components A and B as connected will induce us to let A or B have
knowledge of each other. If A and B collaborate, however subtly, there will be
a detrimental knowledge dependency between them, which will destroy them as
abstractions. This is especially problematical when there is only one instance
of each component. The lack of reuse makes it less likely to think of them as
knowledge independent abstractions. Whenever we draw two components and
connect them with a line, we should think of that as shorthand for two compo-
sition relationships. The drawing of instances of A and B connected by a line
is just code completely contained inside C. From the point of view of A, B and
C and all other abstractions in the system, the only relationship between them
should be composition.

P6–Layers: Layers provide a framework for controlling dependencies. They
should obviously be down the chosen layers, not across or within a layer and
certainly not upwards.

Following on from principle P3, the only dependencies allowed are knowledge
dependencies. This significantly changes how we do layering. Layering should
only reflect the design time view. It should not contain layers based on run-
time dependencies. Apart from [11], the layering metaphor is frequently used to
represent runtime dependencies. For example, layering schemes such as GUI /
Business logic / database, 3-tier, the OSI communications model are all based
on runtime dependencies. Those dependencies run both ways. For instance, at
run-time a database on its own is just as useless as a GUI on its own, and data
will flow in both directions. To fit these systems into knowledge layers, they need
to be rotated ninety degrees. Now the metaphor for them becomes a chain. Their
component abstractions would generally all go into one layer, like A and B in our
previous examples. One additional abstraction, like C in our previous example,
would go in a higher layer. It would instantiate the required abstractions for a
given application, configure them and connect them together.

P7–Stable Dependencies Principle: From P5 and P6 we have abstractions
arranged in layers connected only by composition relationships going down. Rip-
ple effects of change, are now confined to these composition relationships. To
reduce the likelihood of the ripple effects, we reduce the likelihood of changing
abstractions in lower layers. There is a relationship between abstraction, stabil-
ity and reuse in that they tend to increase together. The lower layers should
have increasing stability, and therefore increasing abstraction and reuse [8]. In



higher layers, the abstractions are more specific so that is where the majority of
change will be. All knowledge specific to the application requirements or other
changeable things such as hardware are put in the highest layer abstractions.

P8–Abstraction granularity: There is a threshold point that should occur
at about 100 to 500 lines of code that relates to our brain’s capacity to handle
complexity. Abstractions larger than this size may be too complex and need
decomposing. If the average size is too small, abstractions will become numerous,
again increasing the complexity.

P9–Primary separation - requirements from implementation: The first
division line of decomposition is to separate requirements from implementation.
This is the same principle used by DSLs. The requirements are expressed, suc-
cinctly, in terms of domain abstractions that you invent. Only internal DSLs
are used (we don’t want the disadvantages that external DSLs entail). The rep-
resentation of the requirements knows nothing of the implementation and the
implementation knows nothing of the requirements. Both depend on abstrac-
tions. The representation of requirements may typically take only about 1% of
the total code.

P10–Fluent expression of Requirements: Maintainability is directly pro-
portional to the ease with which new or changed requirements can be imple-
mented into an existing system. More maintainable code bases allow require-
ments and the top-level application code that expresses them, to have a high
degree of one to one correlation.

P11–Diagrams: Architectures must distill out details. We make a distinction
between the use of Diagrams and Models (or boxes and lines). Models, as we
define them, can leave out details arbitrarily, and these details can turn out
to be important at the architectural level. Diagrams, as we define them, can
only leave out details inside abstractions. Diagrams are therefore protected from
change caused by the details. Diagrams are also executable. Diagrams are true
source code.

Models should not be used as documentation of the large-scale structure of
our code, as in for example an informal UML model. That would mean that the
actual large scale-structure of the code is implicit and distributed in the detailed
code. The structure should be explicit and in one place.

Diagrams and text are tools for different situations. Text is better for rep-
resenting linear chains of relationships, or small tree structures that can be
represented through indenting. Diagrams are better in situations where there
are arbitrary relationships between the elements, such as in state charts.

The lines on a diagram show the connections and the structure visually.
The lines also do it anonymously - without use of identifiers that you would
otherwise need to do searches on to find the connections. Diagrams also provide
an alternative and much better way to control scope than encapsulation does.
Encapsulation is not particularly visible at read-time, and limits scope only to
a boundary. A line on a diagram explicitly limits the scope to only those places
where it connects.



Existing literature presents architectural tactics to deal with only some of
these principles, but we still lack a cohesive reference architecture like ALA
for achieving maintainability by design. Standards such as ISO/IEC 25010 de-
fine maintainability and its sub-characteristics [6]. Other works, such as the
Architecture-Level Modifiability Analysis (ALMA) provide a way to evaluate a
given architecture for maintainability [2]. ALMA and ALA both have the same
goal. ALMA uses change scenarios to evaluate modifiability of a given archi-
tecture. ALA is a reference architecture that is pre-optimized with respect to
modifiability. A loose analogy would be solving a mathematical equation. ALMA
is analogous to a numerical technique whereas ALA is analogous to a symbolic
technique. ALMA requires iteration to find an optimal solution. ALA solves for
the optimal solution directly. That solution is the reference architecture. ALMA
measures the quantity of interest, modifiability, directly and does so in the con-
text of a domain, so is potentially more accurate (after some iterations). ALA
makes the assumption that because the reference architecture satisfies the stated
modifiability principles, modifiability is already optimized. The two approaches
are complimentary. Compare modifiability with dependability (correctness). The
two fundamental techniques here are understandability and testing. The devel-
oper first creates code that should be correct by understanding it, and then tests
if it is actually correct by testing it. Using one without the other would not work
well. Similarly ALA provides an architecture that should be modifiable, but still
needs testing that it is actually modifiable.

3 Abstraction Layered Architecture

Abstraction Layered Architecture (ALA) was documented using the Software
Architecture Documentation (SAD) process and template [4]. The following sub-
sections follow the structure provided by SAD, and we highlight the key aspects
of each part of the overall architecture document.

3.1 Architecture Background and Drivers

ALA is geared towards making embedded code more maintainable. Embedded
code bases often contain entities (objects or components) which integrate dif-
ferent programming paradigms like logical, event and navigation flow together.
More generally, we consider any object-oriented system written using any lan-
guage which contains some degree of control or data flow and user interactions.
For pure algorithmic problems, like those that essentially carry out sequential
and nested function calls, ALA reduces to the well known functional decomposi-
tion strategy for functional programs, but adds emphasis on creating functions
at discrete abstraction layers. We identify the following architectural drivers,
based on the sub-characteristics of maintainability as per ISO/IEC 25010 [6]:

– Modularity is the degree to which parts of the system are discrete or inde-
pendent. It depends on the coupling between components, calculated as the



ratio between the number of components that do not affect other compo-
nents and the number of components specified to be independent. It also
requires each component to have acceptable cyclomatic complexity.

– Reusability relates to the degree to which an asset within one component or
system can be used to build other components and/or systems. Reusability
depends on the ratio of reusable assets to total assets, as well as the relative
number of assets conforming to agreed coding rules.

– Analysability is the degree to which we can assess the impact of localized
changes within the system to other parts of the system, or identifying indi-
vidual parts for deficiencies or failures. Analysability depends on the relative
numbers of logs in the system, and suitability and proportion of diagnosis
functions that meet causal analysis requirements.

– Modifiability is the ease at which a part of the system can be modified
without degrading existing product quality. It depends on the time taken for
modifications themselves, and having measures to check the correctness of
implemented modifications within a defined period.

– Testability relates to the ability to easily test a system or any part of it.
It depends on the proportion of implemented test systems, how indepen-
dently software can be tested, and how easily tests can be restarted after
maintenance.

3.2 Views

We use the 4+1 model of documenting a reference software architecture [7]. The
logical view, which decomposes the overall code base into smaller packages, is
the most important aspect of ALA due to its direct impact on maintainability.
The other views are also affected and are discussed briefly after we present the
logical view.

Logical View Fig. 1 shows a representation of the top layer of ALA. Fig. 1(a)
shows ALA’s focus on the creation of clear interfaces which conform to specific
programming paradigms. For instance, we can have explicit, named interfaces
for data flow, event flow and navigation flow in a system. Most embedded code
bases would benefit from multiple programming paradigms meshed together, and
this mapping of interfaces to programming paradigms provides clarity in their
use during the creation and maintenance of the application.

Fig. 1(b) introduces the concept of a domain abstraction. In general, a domain
abstraction is a class which explicitly uses named interfaces, selected from the list
of available interfaces in Fig. 1(b). A domain abstraction can accept an interface,
or provide an interface, consistent with UML class and component diagrams.
Interfaces do not need to be one way. For instance, an interface accepted by a
class may not necessarily feed data into the class, and can also receive data.
However, the two kinds of interfaces can help in understanding the general flow
of data at the application-level (Fig. 1(c)). Another point to note is that domain
abstractions can have multiple interfaces and can within themselves use several



<<interface>> Programming	Paradigm

interface	1 Paradigm A

interface	2 Paradigm B

… …

interface	n Paradigm M
o1:	Domain Abstraction	1

o3:	Domain Abstraction	3

o2:	Domain Abstraction	2

<<interface>>	:	UML	2.0	interface	(interface	1,	2,	…,	n	are	all	unique	interfaces)

Interface	1

Interface	2

Interface	3

(a)	Mapping	of	interfaces	to	programming	paradigms

Domain Abstraction

0..*

0..*

(b)	Domain	Abstraction

(c)	Application-level	design

Key

(a): Programming	Paradigm	(A,	B,	..,	M):	available	programming	paradigm	types	(such	as	UI	layout,	navigation	flow,	etc.)

(b): Domain
Abstraction

:		UML	2	class	diagram

Accepted	
interface

Provided	
interface

(c): UML	2	Component	diagram

Fig. 1. Primary Representation of the Logical View in ALA

programming paradigms represented by these interfaces. This is in line with the
tight coupling between aspects like event flow and navigation flow in a code base.

Fig. 1(c) shows the top-level application code. This is a UML Component
diagram containing objects of named domain abstractions, connected or wired
using compatible interfaces. The idea here is to allow the top-level application
design to closely mimic functional requirements. Then, carefully chosen domain
abstraction instances can simply be wired or re-wired together as needed. In all,
ALA proposes the following four layers, (illustrated in Fig. 2):

1. Application layer, as shown in Fig. 1(c), contains knowledge of a specific
application, no more and no less. Each requirement or feature of the ap-
plication is succinctly represented by instantiating and wiring together the
objects of domain abstractions defined in the second layer.

2. Domain Abstractions layer contains all knowledge specific to the domain,
like the domain abstractions shown in Fig. 1. A domain may roughly equate
to a company. Its abstractions are reusable across all potential applications
in the domain.

3. Framework layer contains all knowledge of programming paradigms and
their associated frameworks and the interfaces shared by domain abstrac-
tions. This layer also abstracts out how the Domain Abstraction layer and



Domain Abstraction	 1

0..*

0..*

Domain Abstraction	 n

0..*

0..*

Application

Domain	Abstractions

Framework

Language

• Programming	Paradigms
• Frameworks

• Programming	language(s)
• Standard	Libraries

Fig. 2. The four layers in ALA

Application layer execute. For example, a common execution model frame-
work here is ’Event driven’. A common service is a timer service. This layer
contains knowledge and services that have potential to be more widely appli-
cable than the domain layer, and consequently are more abstract, stable and
reusable than those in the domain layer. We may not have to write anything
in this layer ourselves as its ubiquity means that someone else may have
already done it. The Applications and Domain Abstractions will only need
to change if we change the programming paradigm or service abstractions.

4. Language layer contributes the most generic knowledge, that of the pro-
gramming language(s) and associated libraries. This layer is included for
completeness, but it is so generic, reusable and stable that we would never
implement it for ourselves. We would always just choose the language(s)
suitable for the types of Applications, Domain Abstractions and Frameworks
we are going to make. All of those higher three layers will have knowledge
dependencies on this language choice, but if the language is stable, those
knowledge dependencies should never be a problem.

These layers are adopted from a similar set of layers proposed in [11]. The
layers are relatively discrete, meaning that ideally each layer would be roughly an



order of magnitude more abstract, more stable and more reusable than the one
immediately above it. Having said that, code contained within a layer need not
be completely flat. For instance, in the domain abstractions layer, we can have
intra-layer hierarchies where abstractions could be built using local compositions.

Four major layers may seem like a small number. But note that the human
brain can be built from just six composition layers - (protons, electrons, etc),
atoms, (protein molecules), (cells or neurons), neural net structures, brain. Some-
times an additional layer may be needed. For example, a features layer could be
introduced between the Application and Domain layers. A given application is
then a composition of features.

Development view The development view constrains the process of designing
and developing a system. ALA requires significant up-front design, in which the
domain abstractions are identified from all known functional requirements. The
need for some upfront design puts us clearly outside the camp of the agile purists
who might say that the design will emerge over time, and clearly in the camp of
the iteration zeroists. After this zero-th sprint spent on design, most of the do-
main abstractions will be known and any remaining architectural design can be
done iteratively, but it remains deliberate and emergence is not encouraged. In
ALA, the first application design involves taking one requirement at a time and
writing it in terms of suitably invented domain abstractions, until all known re-
quirements have been designed. In this respect the Domain Abstractions together
with their shared interfaces form a DSL for concisely implementing requirements.
The shared interfaces of the domain abstractions define the grammar. In terms of
elements, form and rationale, Domain Abstractions are the elements, the shared
interfaces give the form, and this paper provides the rationale.

ALA requires two skill levels. It needs the skills of a software architect com-
petent with all the principles outlined in this article, for the architectural design
and the on-going architectural refactoring. It then requires only average devel-
opment skills for coding the domain abstractions and interfaces, as these are
already stand alone. TDD suddenly starts to work well here as contractors can
be used for the development roles, because they need to know only about the ab-
stractions they work on. When they go, they will not take any other knowledge
with them.

Most modifications to a mature system usually only affect the top layer. The
top layer will typically contain only 1 to 10% of the total code. Addition of new
functionality may require introducing or generalizing domain abstractions.

Process View The process view is concerned with the runtime structure of a
code base. ALA supports both single and multi-process/threaded systems due
to its emphasis on ensuring that domain abstraction instances are wired through
using the right interfaces logically. How these instances and objects bind at run
time is a decision that can be taken later.



Physical view The physical view allows mapping software to resources like
available hardware. ALA does not explicitly constrain the physical view, but the
application-level design shown in Fig. 1(c) can be modified to annotate where
each part of the diagram executes.

4 Evaluating ALA

We carry out two kinds of evaluations for ALA. Firstly, at the architectural
level, we identify the mechanisms that ALA provides for supporting each of the
quality attributes identified in Sec. 3.1. These mechanisms are listed in Tab. 1.
Overall, as can also be seen in Fig. 1(c), ALA supports our original goal of
ensuring functional requirements can be mapped onto the application level in a
one-to-one manner (research question RQ2). The second set of evaluations were
based on using ALA on a Tru-Test product. These experiments are described in
the following subsections.

4.1 Re-architecting an existing product

We chose to re-architect the XR5000, shown in Fig. 3, a hand-held embedded
device used for managing several activities on a dairy farm. The device features
a number of soft-keys for user actions. The user action associated with a soft-key
depends on which screen is currently active. The XR5000 is the latest in a family
of such devices produced by Tru-Test, and the code base for the product has
been maintained and modified over many years. The XR5000 legacy code base
represented a common “big ball of mud” scenario. It contained approximately
200 KLOC. It had taken 3 people 4 years to complete. One additional feature
(to do with animal treatments) had taken an additional 3 months to complete
- indicative of the typical increasing cost of incremental maintenance for a code
base of this type.

For re-architecting this product using ALA, we first did an ‘Iteration Zero’
(two weeks) to represent most of the requirements of the XR5000. This produced
an application diagram with around 2000 nodes. Fig. 4 shows a part of the
application diagram. Tab. 2 shows the various kinds of interfaces used and their
associated programming paradigms as per Fig. 1.

The size of the diagram was interesting in itself. The actual representation
of requirements was about 1% of the size of the legacy code. The nodes were
instances of around 50 invented domain abstractions. The diagram was not a
model in that it was, in theory, executable. Most requirements were surprisingly
easy to represent at the application level. There were occasional hiccups that
took several hours to resolve, but as more abstractions were brought into play,
large areas of functionality would become trivial to represent. This was a positive
beginning.



Table 1. ALA’s support for Maintainability Sub-Characteristics as per ISO/IEC 25010

QA ALA mechanisms

Modularity

The solution consists entirely of modules (that are abstractions). No mod-
ule need be large because it can always be broken up into a composition
of other abstractions.
Cyclomatic complexity can be dealt by hierarchical layer-based decom-
positions
Cyclomatic complexity is reduced because modules based on abstractions
naturally have a single responsibility.
Upfront design ensures high cohesion within domain abstractions

Reusability

Reusability increases typically by an order of magnitude as we go down
each layer
Two layers are dedicated to two levels of reuse, layer 2 for reuse at the
domain level, and layer 3 for reuse at the programming paradigm level
Interfaces and domain abstractions are reusable types
Domain abstractions conform to coding rules via interfaces
The interfaces that exist for connecting domain abstractions are at the
reuse level (and abstraction level) of the framework layer.

Analysability Any piece of code, being inside an abstraction, is small and coherent in it-
self, and the only external knowledge dependencies needed to understand
it are on abstractions in lower layers. These abstraction dependencies, be-
ing composition relationships, are necessary to the meaning of the higher
layer abstraction content.

Modifiability

The knowledge contained inside abstractions tends to be naturally cohe-
sive and therefore easy to change.
The knowledge contained inside abstractions is zero-coupled with that in
all other abstractions - zero ripple effects.
Dependencies are restricted to true knowledge dependencies, so zero rip-
ple effects from run-time dependencies.
All Dependencies are composition relationships on abstractions, (not
their contained knowledge) so ripple effects occur only if the nature of
the abstraction itself changes.
Abstractions tend to be naturally stable entities - reducing ripple effects.
Abstractions are an order of magnitude more stable in a lower layer,
further reducing ripple effects.

Testability

All abstractions can be tested individually within a layer because they
are already zero coupled with their peers. Testing mocks can easily be
wired to them.
Inter-working of domain abstractions can be tested with straightforward
integration tests by wiring each possible combination of abstraction.
Higher layer abstractions are generally tested with their composition of
lower layer abstractions intact.
Automated acceptance testing via the external interfaces is not signifi-
cantly easier in ALA as the system appears as a black box to these type
of tests. However ’under the skin’ acceptance testing can be easier be-
cause all I/O abstractions can be replaced by wiring in modified versions
that can mock the hardware instead.



• 

. 
• 
• 
• 

A, Z X C V B N M 43 

1 2 

5 

7 8 

0 

0 

3 
• A' 

6 

<�9 

V 

--4.-

••1111 ·

Fig. 3. The XR5000 embedded device

AllAnimalsScreen Softkeys

Softkey Navigate AnimalHistoryScreen

Softkey
Menu MenuItem Navigate SessionSummaryScreen

MenuItem Navigate SettingsScreen

Panel

Grid

TextDisplayField

Search AnimalsTable

Title = “History”

Title = “Options” Text = “Session...”

Text = “Settings...”

Label = Search

Fig. 4. Sample application-level diagram for a part of the ALA-based XR5000 code
base

4.2 Adding a new feature

The diagram created during the re-architecting experiment deliberately did not
include the aforementioned “treatments” feature. The next experiment was to
add this feature to the application. This involved adding database tables, fields
to existing tables, a settings screen, a data screen, and event-driven behaviours.
The incremental time for the diagram additions was of the order of one hour.
Obviously testing was needed to be considered also, and the ’Table’ abstrac-
tion also needed additional work so it could migrate the data in its underlying
database, a function the product had not needed up until this point. Although
somewhat theoretical, the experiment was evidence to us of a potential order of
magnitude improvement in incremental maintenance effort.

The big question now was, could the application diagram be made to ac-
tually execute? Fortunately we were allowed to fund a summer undergraduate
student for 3 months to try to answer this question. It was a simple matter to
translate the application diagram into C++ code that instantiated the abstrac-



Table 2. Mapping of interfaces to programming paradigms for the XR5000

Interface(s) Programming paradigm

IUiLayout, IMenuItem UI layout

IDestination Navigation flow

IEventHandler Reactive

ITable Data flow or Stream

iAction Activity flow

tions (classes), wire them together using dependency injection setters, configure
the instances using some more setters, and use the fluent interface pattern to
make all this straightforward and elegant. As an example, the wired code for the
diagram sample shown in Fig. 4 is shown in Fig. 5. Thanks to the composability
offered by the interfaces of the domain abstractions, wiring instances in code
follows exactly the same structure as the application diagram. We have omitted
the interface types and kinds (provided or accepted) since we can only legally
connect two instances through compatible interfaces. Also, the distinction be-
tween provided and accepted interfaces is more useful when defining the domain
abstractions, and not so much during the wiring of their objects because both
kinds of interfaces allow bidirectional flow of information.

The student’s job was to write the classes for 12 of the 50 abstractions in
the application. These 12 were the ones needed to make one of the screens of
the device fully functional. The initial brief was to make the new code work
alongside the old code, (as would be needed for an incremental legacy rewrite)
but the old code was consuming too much time to integrate with so this part
was abandoned. The learning curve for the student was managed using daily
code inspections, explaining to him where it violated the ALA principles, and
asking him to rework that code for the next day. It was his job to invent the
methods he needed in the interfaces between his classes to make the system
work, but at the same time give no class any knowledge of the classes it was
potentially communicating with. It took about one month for him to fully “get”
ALA and no longer need the inspections. As a point of interest, as the student
completed classes, the implementation of parts of the application other than the
one screen we were focused on became trivial. He could not resist making them
work. For example, as soon as the ’Screen’, ’Softkey’ and ’Navigation action’
classes were completed, he was able to have all screens displaying with soft-keys
for navigating between them, literally within minutes.

The 12 classes were completed in the 3 months, giving the screen almost
full functionality - showing and editing data through to an underlying database,
searching, context menus, etc. Some of the 12 domain abstractions were among
the most difficult needed for the XR5000, and most of the interfaces had to be
designed, so there is some validity for extrapolation. Also, performance issues
were considered during the implementation. For example, the logical flow of data
from a Table to a Grid was actually implemented by passing a list of objects
in the opposite direction that describe how the data is transformed along the



Fig. 5. Code Snippet relating to Fig. 4

way. These objects are eventually turned into SQL in a ’Database interface’
class within the Table abstraction. We can estimate that the 50 classes may
have taken about one man-year to complete for the student. This compares
with the 12 man-years to complete the original, conventionally written code. An
interesting observation is that the original architecture diagram did not need to
change as a result of the implementation of its composite abstractions.

5 Concluding Remarks

Abstraction Layered Architecture or ALA is an attempt to integrate principles
that seem to produce code bases that are easy to maintain over a long time. These
principles were identified via a review of Tru-Test code bases, both successful or
unsuccessful from a maintenance point of view, and supplemented by a review
of existing literature on this subject. This set of principles was then used to



emerge a reference architecture based on layering of abstractions. We later show
how ALA meets the key sub-characteristics of maintainability as per ISO/IEC
25010. More importantly, we show how an existing product at Tru-Test was
re-architected and extended using ALA to produce a more maintainable and
compact code base in a fraction of the time it took for the original code base.

This paper opens up several exciting directions for future research. We aim
to continue developing ALA to incorporate other practices for maintainability,
several of which are becoming more apparent as Tru-Test’s software operations
scale up. Investigating the use of ALA in non-embedded code bases such as for
enterprise systems, and gathering empirical data on its effectiveness are some
other future directions.

References

1. Alexander, C.: The nature of order: the process of creating life. Taylor & Francis
(2002)

2. Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-level modifiability
analysis (alma). Journal of Systems and Software 69(1-2), 129–147 (2004)

3. Cataldo, M., Mockus, A., Roberts, J.A., Herbsleb, J.D.: Software dependencies,
work dependencies, and their impact on failures. IEEE Transactions on Software
Engineering 35(6), 864–878 (2009)

4. Clements, P., Garlan, D., Little, R., Nord, R., Stafford, J.: Documenting software
architectures: views and beyond. In: Proceedings of the 25th International Confer-
ence on Software Engineering. pp. 740–741. IEEE Computer Society (2003)

5. Foote, B., Yoder, J.: Big ball of mud. Pattern languages of program design 4,
654–692 (1997)

6. ISO/IEC: ISO/IEC 25010 - Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) - System and software qual-
ity models. Tech. rep. (2011)

7. Kruchten, P.B.: The 4+1 view model of architecture. IEEE Software 12(6), 42–50
(Nov 1995)

8. Martin, R.C.: Agile software development: principles, patterns, and practices. Pren-
tice Hall (2002)

9. Nicolau, A.: Run-time disambiguation: coping with statically unpredictable depen-
dencies. IEEE Transactions on Computers 38(5), 663–678 (1989)

10. Ossher, H., Tarr, P.: Using multidimensional separation of concerns to (re) shape
evolving software. Communications of the ACM 44(10), 43–50 (2001)

11. Page-Jones, M., Constantine, L.L.: Fundamentals of object-oriented design in
UML. Addison-Wesley Professional (2000)

12. Perepletchikov, M., Ryan, C., Frampton, K.: Cohesion metrics for predicting main-
tainability of service-oriented software. In: Quality Software, 2007. QSIC’07. Sev-
enth International Conference on. pp. 328–335. IEEE (2007)

13. de Souza, S.C.B., Anquetil, N., de Oliveira, K.M.: A study of the documentation
essential to software maintenance. In: Proceedings of the 23rd annual international
conference on Design of communication: documenting & designing for pervasive
information. pp. 68–75. ACM (2005)

14. Visser, E.: Webdsl: A case study in domain-specific language engineering. In: In-
ternational Summer School on Generative and Transformational Techniques in
Software Engineering. pp. 291–373. Springer (2007)


