
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Building Maintainable Software Using Abstraction
Layering

John Spray, Roopak Sinha, Senior Member, IEEE, Arnab Sen, and Xingbin Cheng

Abstract—Increased software maintainability can help improve
a company’s profitability by directly reducing ongoing software
development costs. Abstraction Layered Architecture (ALA) is a
reference architecture for building maintainable applications, but
its effectiveness in commercial projects has remained unexplored.
This research, carried out as a 16-month joint industry-academic
project, explores developing commercial code bases using ALA
and the extent to which ALA improves maintainability. An exist-
ing application from Datamars, New Zealand, was re-developed
by using ALA and compared with the original application. In
order to carry out these comparisons, we developed suitable
measures by adapting maintainability characteristics from the
ISO 25010 family of standards. Specifically, we determined
metrics to capture the five sub-characteristics of maintainability:
modularity, reusability, analysability, modifiability, and testabil-
ity; and used them to test our hypothesis that the use of ALA
improved maintainability of the application. During the evalu-
ation, we found that the modularity, reusability, analysability,
and testability of the re-developed ALA application were higher
than for the original application. The modifiability of the ALA-
based application was lower in the short-term, but shown to
trend upwards in the longer term. Our findings led to proposing
a generalised ALA-based development method that promises a
significant reduction in maintenance costs.

Index Terms—maintainability, ALA, modularity, reusability,
analysability, modifiability, testability

I. INTRODUCTION

Software maintainability is directly correlated with prof-
itability. More maintainable software is easier to update and
extend, which helps reduce software development costs. It
is said that 90% of commercial software is under mainte-
nance [1], so even minor improvements in maintainability can
provide high returns.

A recently proposed reference architecture, called Abstrac-
tion Layered Architecture (ALA) [2], claims to significantly
improve maintainability. ALA was shown to qualitatively im-
prove various maintainability sub-characteristics [3] in a small
student-driven case study developed in a commercial setting.
This article evaluates the impact of ALA on maintainability
through the re-development of a commercial application. This
experience also leads to exploring a generalised approach
to using ALA in commercial software development projects,
which was missing in the previous work.

J. Spray is with Datamars New Zealand. e-mail: johnspray74@gmail.com
R. Sinha is with the Department of Computer Science & Software

Engineering, Auckland University of Technology, New Zealand. e-mail:
roopak.sinha@aut.ac.nz

A. Sen is with the Department of Computer Science & Software
Engineering, Auckland University of Technology, New Zealand. e-mail:
arnab.sen210@gmail.com

X. Cheng is with Datamars New Zealand. e-mail: ros-
man.cheng@datamars.com

Datamars (New Zealand) manufactures various hardware
and software solutions for livestock management. The Data-
mars application (DMA) is a key desktop software application,
which allows Datamars’ devices to interface with other devices
and online databases for several purposes, including livestock
data management, settings, device updates and reporting.

As the number of user stories, devices, radio protocols,
and database APIs has grown, DMA has undergone continual
maintenance, which has become increasingly costly over 20
years. Even small changes typically require understanding
many parts of the code. As the code is highly coupled, it
requires many ’all-files finds’ to analyse. Changes continually
compound the situation by requiring ever-widening interfaces,
further increasing coupling and complexity. Other new major
requirements, such as automatic data transfers, cannot even be
contemplated because of their difficulty.

Due to its rising complexity, Datamars discontinued major
feature addition on Legacy-DMA in 2018-19 and commis-
sioned a “from-scratch” re-development of the application.
As maintainability was key, we decided to use ALA for this
re-development to evaluate its effectiveness. In order to do
that systematically, we wanted to ascertain the best way to
measure maintainability in the two versions of the application
objectively. Furthermore, as this project also incorporated a
development phase, it was considered valuable to document
the process used. These motivations led to the formulation of
the following research questions:

RQ1. How can the process of ALA-based development be
generalised?
RQ2. What are the most relevant measures for assessing
maintainability of a commercial object-oriented code base?
RQ3. To what extent does ALA improve maintainability, as
measured on a commercial code base using the measures
identified from RQ2?

RQ1 was answered via the case study methodology [4].
Building on our team’s experience in ALA-based develop-
ment in small, laboratory-based examples, we developed an
ALA-based version of the DMA, called ALA-DMA. ALA
is described in Sec. II. This experience led to identifying
patterns of maintenance in ALA code bases and formulating
a generalised ALA development process, which is presented
in Sec. III. For RQ2, a systematic literature review was used
to identify commercially available metrics for measuring the
maintainability of code bases. In contrast to existing literature,
such as [5], we provide the first categorisation of available
metrics based on the sub-characteristics of maintainability
defined by ISO 25010 [3] and the measures for each of these

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

sub-characteristics defined by ISO 25023 [6]. The findings
of this categorisation are summarised in Sec. IV. RQ3 was
answered in two steps. We first conducted an initial, qualitative
assessment of ALA’s impact on maintainability, presented in
Sec. V-A. Subsequently, in Sec. V-B, we describe a deeper
and more comprehensive quantitative analysis of ALA-DMA
using the metrics identified in Sec. IV.

This study makes four contributions. Firstly, we provide a
commercial case study (ALA-DMA) to show how an ALA
program can be developed in practice. Secondly, we propose
a generalised process to reliably develop and maintain ALA
applications, based on the experience gained from the ALA-
DMA case study. Thirdly, we provide a categorisation of
concrete and commercially available maintainability metrics
based on the five sub-characteristics of maintainability defined
by ISO 25010 [3]. These metrics are supported by commercial
tools and can be readily used by practitioners. Finally, we
present qualitative and quantitative (based on the ALA-DMA
case study) analysis of ALA based on the metrics we propose.
Our analysis shows that ALA can significantly improve four
sub-characteristics of maintainability: modularity, reusability,
analysability and testability. Modifiability is lower in the initial
stages but is shown to trend upwards.

II. ABSTRACTION LAYERED ARCHITECTURE (ALA)

This section introduces the ALA reference architecture and
illustrates its use through the development of ALA-DMA. We
use Krutchen’s 4+1 viewset model [7] to describe ALA in the
following subsections.

At the fundamental level, ALA enforces two constraints: 1)
Only one type of relationship is allowed - a dependency on an
abstraction that is more abstract than the one using it. 2) All
abstractions should be small, usually in the range of 100 to 500
LOC. From these basic rules, properties and patterns emerge
as described in the following views. We define dependencies
and abstractions clearly in subsequent subsections.

A. Development View

The development view describes both the process of de-
veloping ALA applications, as well as the artefacts that are
produced during the development process [7].

1) Abstractions, Dependencies and Layers: Abstractions
are the only package of code in ALA. An abstraction is more
than a module in that it must also be a ‘conceptual idea’. That
conceptual idea gives it stability.

We define dependency as one artefact using or requiring
another artefact to function. We define coupling as code in dif-
ferent artefacts having some form of knowledge of each other;
some form of implicit or explicit collaboration is occurring at
design-time. Changes in one can potentially cause changes
in the other. A dependency on a more abstract abstraction is
essentially a dependency on a conceptual idea. There is zero
coupling between the code that is dependent on the abstraction
and the code that implements the abstraction. For example,
consider the abstraction, square-root. As a conceptual idea,
it is stable. Therefore there is zero coupling between code
that uses square-root and code that implements square-root.

Since the only legal dependency in ALA is on a more abstract
abstraction, ALA exhibits zero coupling. Abstractions are also
internally highly cohesive, so ALA is said to have zero cou-
pling and high cohesion. ALA shifts information hiding from
compile-time (encapsulation) to design-time (abstraction).

ALA distinguishes between good and bad dependencies,
whereas conventional software tends to view all dependencies
the same way. The ALA view is that a dependency on a
more abstract abstraction is good, not only because it has zero
coupling, but because a high number of such dependencies
means the abstraction has greater reuse. There are at least
two types of dependencies found in conventional code that
are illegal in ALA. One is used for communication between
different parts of an application. The other is when a module
is broken up arbitrarily into parts that are specific to that
module. Both these types of dependencies cause coupling.
ALA replaces coupling or collaboration between modules with
cohesive code completely contained inside a new abstraction in
a higher layer. ALA replaces hierarchical decomposition with
composition of instances of abstractions from lower layers.

The ALA constraints cause the emergence of abstraction
layers. Each layer has its own sub-folder containing multiple
abstractions. Lower layers are more abstract than higher layers.
Dependencies only go down the layers.

Abstractions in each layer tend to have certain character-
istics. A reasonably sized application, such as ALA-DMA
contains four layers: Application (top), Domain abstractions,
Programming paradigms, ALA foundation (bottom). Fig. 1
shows a common pattern of dependencies through three layers.

Abstraction B

+ field: interface A

«interface» A

Abstraction C implements A

Programming
Paradigms

Domain
Abstractions

new B().wireTo(new C()); Application

Fig. 1: A sample wiring pattern that conforms to ALA

The top-most application layer (covered in Sec. II-B) con-
tains compositions of instances of domain abstractions. A do-
main abstraction is typically implemented as a class. Domain
abstractions have ports that allow us to compose their instances
in the application layer to describe user stories. Ports are in-
stances of programming paradigms. Programming paradigms
typically define the way instances of domain abstractions can
be composed together. Each defines a different meaning for
composition. They are typically implemented as an interface.
Each has an execution model (covered in Sec. II-C). The
ALA foundation layer has an abstraction, called the wireTo
operator, that supports the whole pattern.

Fig. 1 shows a programming paradigm A implemented as an
interface. Domain abstractions B and C use the programming
paradigm A as its ports. B has a private field of the type of
interface A, while C implements the interface. Instances of B

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

and C can therefore be wired together in the application layer
using the wireTo method.

2) Development Process: The ALA development process
shown in Fig. 2 features up-front design for a maximum of
one agile iteration, similar to the waterfall model [8], where
we identify a starting set of abstractions based on an initial
set of functional and quality requirements.

Start Iterating

Pick sample
requirement

Analyse how can
we express this
requirement?

Exist
appropriate programming

paradigms?

Exist
appropriate domain

abstractions?

Wire instances of
domain abstractions to
describe requirement

Yes

Yes

Invent new
programming paradigm

abstractions

Invent new domain
abstractions

No

No

Fig. 2: ALA Up-front Design Process

The first step of the up-front design is to identify a
representative sample of requirements. For ALA-DMA, the
initial requirement types included connection with different
Datamars livestock management (F1), downloading data from
connected devices (F2) and saving it in different file formats
(F3), importing and uploading files from/to other devices and
cloud servers (F4, F5), as well as quality requirements related
to interoperability between all Datamars products (Q1) and
usability (Q2).

Next, we produce an initial top-level logical structure for the
software called an application diagram (discussed in detail
in Sec. II-B). This involves very rapid iterations where we
process the representative sample of requirements, and “ex-
press” them in terms of a composition of instances of invented
domain abstractions. In this up-front phase, the team does
not build any implementation code for domain abstractions
or programming paradigms; their job is to find an initial set
of domain abstractions and programming paradigms that can
express requirements in the domain, through rapid iterations
of the loop in Fig. 2.

For ALA-DMA, around 50 user stories were expressed by
the up-front design diagram. Each user story started with
adding UI because that has the easiest identifiable abstractions,
then handling any events from the UI or other external sources,
then any data-flow sources, destinations, and transformations
needed to complete the user story. Tab. I shows the initial
abstractions created.

The up-front design team would typically include an “ALA
architect” role - someone who understands and has some
experience with creating domain abstractions and, more impor-
tantly programming paradigms. The programming paradigms
should generally be conceived from common relationships
found in the wording of requirements. If this is difficult, the
requirements may be incomplete or vague. One approach is
the architect re-writes the requirements as well-formed user
stories or use cases, and validates them with stakeholders
first. It is important that no longer than one agile iteration

Layer Abstractions
Application User stories
Domain Ab-
stractions

Button, Grid, MainWindow, Menu, MenuItem, Hor-
izontal, OpenFileBrowser, OpenWindowsExplorer,
OptionBox, OptionBoxItem, Panel, Picture, Pop-
upWindow, ProgressBar, RightJustify, RowButton,
SaveFileBrowser, Text, ToolItem, Vertical, Wizard,
WizardItem, ToDataFlow, ToEvent, Count, Equals,
Filter, Iterator, LiteralString, Map, Not, Select,
Sort, StringFormat, Transfer, Value, SCPProtocol,
SCPSense, SCPSessions, SCPData, SCPLifeData,
CSVFileReaderWriter

Programming
Paradigms

UI-layout, Data-flow, Event-driven, Table-data-flow

Foundation WireTo operator
Language Underlying programming language

TABLE I: Initial sets of abstractions for ALA-DMA

is spent on up-front design; the domain abstractions and
programming paradigms must be validated by building them
and getting the user stories executing before continuing with
more functionality in subsequent iterations.

After the up-front design iteration has concluded, the rest
of the development adopts an agile process [9] in which
domain abstractions and programming paradigms are allocated
to team members or teams for implementation and user stories
continue to be developed by other team members or teams. For
ALA-DMA, Scrum-based development [10], which is standard
practice at Datamars, was adopted to develop the application
in two-week sprints carried out over 16 months.

As domain abstractions are zero coupled, and depend only
on an understanding of programming paradigms, their imple-
mentation can be carried out by less-experienced developers.
For ALA-DMA, the development was carried out by a master’s
student for the first 8 months, and three intern students for the
remaining 8 months. Finally, maintenance activities involve
continued addition of requirements by adding compositions of
instances of existing domain abstractions to the application di-
agrams. New domain abstractions are required with decreasing
frequency. Further details of the maintenance phase are given
in Sec. III and Fig. 4.

B. Logical View

In ALA the logical view [7] is the content of the application
layer. This application diagram, essentially a static UML ob-
ject diagram, is the highest and most concrete layer in an ALA
code base. All objects are instances of domain abstractions
and are connected via their ports. During up-front design, the
initial application diagram for ALA-DMA expressed roughly
half of the known requirements and contained approximately
1000 instances of the 42 domain abstractions shown in Tab. I.

Fig. 3 shows a part of the ALA-DMA application diagram.
All code artefacts for this diagram are available to download
and execute at https://github.com/johnspray74/ALAExample.
Note that only a subset of the ALA-DMA source code is
published due to confidentiality agreements with Datamars.
However, the published code shows all the mechanisms needed
in an executing ALA application.

We have colour coded the diagram such that the yellow,
green, blue, and brown sections represent four distinct user sto-

https://github.com/johnspray74/ALAExample

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

MainWindow

Horizontal
mainPanel

Horizontal
toolbar

Horizontal
menubar

Horizontal
titlebar

Horizontal
statusbar

Text
"DataLink"

Menu
"File"

MenuItem
"Import from

device"

Wizard
"Where do you
want to put it"

RadioButton
"local CSV file"

SaveFileBrowser
extension =

"csv"
CSVFileReaderWriter

close

MenuItem
"Exit"

RadioButton
"Cloud"

rowSelected
Grid sessions

Grid data

startToEvent

Text
"Searching for a

device"
FontColour = Red

Text
"Connected"

FontColour = Green

ToolItem
Icon="Import.png"

ToEvent Transfer

SCPData import

data input

SCPSessions

data input

SCPData
forGrid

SCPSense

COMPortSCPProtocol

Arbitrator

Timer
Periodic = true
Period = 3000

Not

output

appStart

filepath

data
input

out

in

go
output

children

children

children

children

children

children
parent

connected

ToEvent

start

parent

parent

session
output

select
session

data
output

poll

data
output

children

visible

visible

children

output output

Fig. 3: Partial application diagram expressing user stories of ALA-DMA

ries. Each box represents an instance of a domain abstraction
and the lines represent wirings between abstraction instances
via ports that conform to specific programming paradigms.
Instances are anonymous by default, but are sometimes given
names (underlined) to describe their function in the context of
the application. Some ports are not named where their function
is obvious. For example, “input” and “output” for some Data-
flow programming paradigm ports, or “children” and “parent”
for UI layout programming paradigm ports. The application
diagram uses multiple programming paradigms, as described
in the following paragraphs.

The user story implemented in the yellow section of Fig. 3
primarily uses the UI-layout programming paradigm to build a
UI framework for the application. The wiring from MenuItem
Exit to the MainWindow uses the event-driven programming
paradigm to signal closing the main window of the application
via an event generated when the “Exit” menu item is clicked.

In the green user story, the application senses when a device
is connected and indicates its status. A start event comes from
the MainWindow’s appStart port when the application starts
running. It starts a periodic timer that emits an event every
3 seconds, which causes the SCPSense instance to poll the
serial COM port for a device (SCP stands for Serial Command
Protocol). When SCPSense senses a device, it outputs a true
value on its “connected” port, which is using the Data-flow
Programming Paradigm. This is wired to the “visible” ports
of two text messages that reside on the status bar.

In the blue user story, on connection of a device, the device’s
session files are displayed. When the user clicks on one of
the sessions, it displays the data. The user can scroll through

either the sessions or the data. The Grid requests rows from
its data input as needed over a Table-data-flow programming
paradigm.

In the brown user story, the user can choose to import a
session from the menu. A wizard is used to select destination
options, one of which is to write the data to a CSV file.
The Wizard appears when it receives an event on its “start”
port. When the user selects one of the items in the Wizard
and clicks next, it emits an event on the output port of the
WizardItem instance, which is wired in turn to an instance
of SaveFileBrowser, which outputs a filepath. The filepath
is wired both to the instance of a CSVFileReaderWriter and
to an instance of ToEvent to convert it into an event, wired to
an instance of Transfer. Transfer knows how to pull all the
rows and columns of data on its “in” port and push them to
its “out” port (which it does in batches). These ports are also
of the Table-data-flow programming paradigm.

The application diagram, which was the output from the
up-front design phase did not need to change when the do-
main abstractions and programming paradigms were actually
implemented and, the diagram was able to execute.

C. Process View

The ALA process view is effectively governed by the
programming paradigms. These are more general than the
domain abstractions, and each defines a different execution
model. They can be a simple interface, as is the case for
a synchronous event-driven programming paradigm, or an
execution engine of some kind, such as would be needed for
asynchronous event-driven programming or hierarchical state

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

machines. Documentation of each programming paradigm
describes the execution model, together with its properties
such as performance, concurrency and distribution. Given a
general understanding of the process view of the programming
paradigms, the specific process of a user story appears as the
relevant connections in the logical view.

1) Executing the Application Diagram: The programming
paradigms, being quite abstract, are often relatively simple
interfaces. For example, the data-flow paradigm was imple-
mented as:
namespace ProgrammingParadigms {

interface IDataFlow <T> {T Data { set; } };
}

In our current C# implementation of ALA-DMA, the do-
main abstractions just implement or accept these interfaces.
One of the simplest domain abstraction implementations is
listed below to show how the ports work. The input port is
an implemented interface, and the output port is written as a
private interface field.
using ProgrammingParadigms;

namespace DomainAbstractions
{

// Emits an event whenever data is received.
public class ToEvent <T> : IDataFlow <T> // input
{

public string InstanceName {get; set;} = "";
private IEvent output;
T IDataFlow <T>.Data {set => output ?. Execute ();}

}
}

Instances of the domain abstractions are wired together
by compatible ports according to the diagram. The wiring is
achieved by a WireTo operator. WireTo is an extension method
that uses reflection to achieve dependency injection. In other
words, through the operation a.WireTo(b), where a and b are
instances of domain abstractions, b is assigned to one of a’s
private interface fields if b is found to implement that interface.
WireTo returns its first operand to support the fluent style. The
code below shows how the wirings for the yellow user story
from Fig. 3 can be hand-coded. Note that in practice, it is
possible (and for the sake of maintainability, preferable) to
automate the generation of the wiring code.
var mainWindow = new MainWindow ();

mainWindow
.WireTo(new Horizontal () {InstanceName="titlebar"}

.WireTo(new Text("DMA")))
.WireTo(new Horizontal () {InstanceName="menubar"}

.WireTo(new MenuItem("Exit")
.WireTo(mainWindow)))

.WireTo(new Horizontal () {InstanceName="toolbar"})

.WireTo(new Horizontal () {InstanceName="mainPanel"})

.WireTo(new Horizontal () {InstanceName="statusbar"});

The diagram executes in three stages after the program
starts up. First, all the wiring code shown above executes to
instantiate domain abstractions and inject their wirings. Next,
the MainWindow makes a call on its children port which is
a list of IUI interfaces. This causes a tree of IUI calls, which
constructs the static part of the entire UI tree from whatever
underlying UI widget library the UI domain abstractions are
implemented. Once this is done, the IUI interfaces are not
used further. Finally, to start the application running, an event

is emitted from the appStart port of the MainWindow to start
any active domain abstraction instances. Events can also arise
from UI domain abstractions as the user interacts with the
application.

D. Physical View

In many architecture designs, the separation of the sys-
tem starts with the physical view. Logical views are then
separately developed for each physical location, often with
different technologies. This leads to coupling between the
modules at different locations. ALA’s approach is to ignore
the physical view entirely at first, and get the application
layer abstractions that express whole user stories designed in a
cohesive manner first. Parts of the application diagram can be
annotated and subsequently distributed over multiple physical
locations or processes as long as wirings between these parts
use programming paradigms that support distribution, such as
asynchronous (queued) events, or data-flow using async/await
or future types of patterns. The distribution of ALA applica-
tions requires further work and was not a part of ALA-DMA
which is a monolithic application.

E. Comparing ALA with other architectural styles

When the two fundamental ALA constraints are followed,
a number of recognisable patterns emerge, which is not sur-
prising. For example, dependency injection, domain-specific
languages, frameworks, components and connectors, program-
ming paradigms such as data-flow, UI-layouts and state-
machines, composability, diagrams in general, monad-like
two-stage wiring and execution, and composite and decorator
patterns can all appear in ALA applications. Using them
without the two constraints does not produce an ALA ar-
chitecture, however. Each has similarities and differences, for
example, layering in ALA becomes ”knowledge dependency”
layering rather than ”communication dependency” layering.
Some traditional wisdom is relatively at odds with ALA. For
example, UML class diagrams encourage relationships be-
tween classes, preventing them from being good abstractions,
which is explicitly disallowed in ALA; the class diagram of
an ALA application would be drawn with no lines at all.

Frameworks [11]: ALA domain abstractions are typically
closer to the domain of an application than a framework’s [11].
The application diagram generally only assembles and con-
figures instances of domain abstractions that then use ports
to inter-communicate at run-time, without adding much code.
Like frameworks, the ”execution engines” of the programming
paradigms go in a lower layer, so the application layer does
not control execution flow. However, ALA is also applicable
to functional programming, where the application layer does
control execution flow. Unlike frameworks, ALA forbids using
an abstraction in a lower layer through inheritance. It uses
composition instead. If up-calling is required, it passes in a
lambda expression, an anonymous function, or uses the ob-
server (publish/subscribe) pattern. The observer pattern cannot
be used sideways within a layer.

Domain-driven design (DDD) [12]: Despite ALA’s promi-
nent use of the term “domain”, ALA and DDD are different.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

DDD first creates a domain model outside the code based on
gaining a deep understanding of the domain. This technique is
complementary to ALA. Then it uses prescribed methods to
decompose into modules based on functional partitioning. In
contrast, ALA focuses on restating requirements directly and
succinctly by composing instances of domain abstractions. If
the logical diagram is considered to be the domain model, then
the domain model is directly executable in ALA.

Domain specific language (DSL): Domain abstractions pro-
vide the nouns and verbs, and the programming paradigms pro-
vide the grammar of an internal DSL. However, ALA provides
layering constraints on how the “language” is implemented.
As with an external DSL, ALA generally puts the execution
models into a lower layer.

Software product lines (SPL) [13]: SPLs are an enterprise-
level architecture that focuses on predictive reuse of artifacts
within multiple products with sufficient commonality. In com-
parison, ALA focuses on abstraction for its ability to organise
and zero-couple code even within a single application. ALA
is just a lightweight way to organise code

Microservices [14]: Another enterprise-level architecture,
microservices effectively encourage better abstractions by us-
ing physical hard-boundaries for which external communica-
tions requires more effort in the design of APIs. However, peer
services can still have design-time coupling because aspects of
user stories can still be embedded into them. ALA brings the
benefits of abstractions to monolithic applications, and does
it with zero coupling. If ALA is applied to microservices,
you would add a service to represent a cohesive user story
in the top layer, and it would instantiate, configure and con-
nect instances of abstract services. The microservices would
use generic interfaces to communicate at run-time, and only
provide an API to the upper layer for configuration.

Component based software engineering: Components are
often touted as reusable, and to the extent that they are
reusable they are also abstractions. So the UML component
diagram with lollipop interfaces appears to be the same as the
ALA application diagram. To conform to ALA the following
additional constraints are required. Firstly, the component dia-
gram must control the instantiation and wiring of components.
Often a component diagram is just documentation and the
actual topology is embedded into the components themselves
in terms of the interfaces they provide and use, and implicitly
in their collaboration. A component may be substitutable by
another that implements the same interfaces, but that is not
enough to conform with ALA, even if it is configured by
container-based dependency injection. Secondly,, the lollipop
interfaces in the component diagram must be more abstract
than the components. The domain abstractions know about
these interfaces, but the interfaces do not know about the
domain abstractions. This allows the property of composability
(a finite number of components can be assembled in an infinite
number of ways). In ALA, we think of interfaces as being
programming paradigms to help get them at the right level
of abstraction. In terms of the principle of compositionality
(the principle that the meaning of a complex expression is
determined by the meanings of its constituent expressions
and the rules used to combine them), we think of domain

abstractions as the constituent expressions, and programming
paradigms as the rules used to combine them.

III. LONG-TERM MAINTENANCE OF ALA CODE BASES

Maintenance activities take three forms [15]. Corrective
maintenance involves debugging and fixing defects. Adaptive
maintenance happens in response to technology updates. Fi-
nally, perfective maintenance involves adding new features.

ALA-DMA underwent ongoing corrective maintenance af-
ter the initial up-front design phase concluded. The following
stable pattern of carrying out corrective maintenance in ALA
was observed. Debugging always begins in the application
diagram by following data flows, event sequences or UI
layouts in the diagram. There are two possibilities: A logical
or wiring error may be found in the application, or an
abstraction may not operate as expected. In the latter case,
the relevant abstraction can be inspected and corrected. Due
to zero coupling, other abstractions remain unaffected.

In adaptive maintenance, changes to the underlying pro-
gramming language or its libraries can potentially affect
all the other layers. In ALA-DMA, no substantial adaptive
maintenance was carried out. However, updates in the .NET
framework in which the application was written required
only slight idiomatic changes to the implementation of the
domain abstractions, and the application diagram remained
unaffected. The domain abstractions layer can be thought of
as providing a DSL-like or framework-like API for the direct
implementation of requirements in the application layer. Even
major technology updates requiring a re-implementation of
certain domain abstractions will not affect this API, ensuring
that the application layer stays unaffected during adaptive
maintenance.

Regular perfective maintenance was carried out to con-
tinuously implement additional user stories, or modify the
application for evolving requirements emerging from user
feedback. The following pattern emerged:

1) The application diagram is updated to implement new or
modified requirements in the form of updated wirings or
domain abstraction instances.

2) If a suitable abstraction is not available when implement-
ing a new or modified requirement, new abstractions may
be created, in a similar fashion to ALA’s up-front design
phase.

Over the 16 months of development, ALA-DMA used over
100 domain abstractions and six programming paradigms.
Fig. 4 shows the average commits per month to the application
layer, the domain abstractions and the programming paradigms
since their creation. The graphs give an indication of in-
creasing stability of domain abstractions and programming
paradigms. The application commits are applicable to approx-
imately 10% of the code residing in the top-most application
layer. The “hump” at the 8-9 month mark is caused by the
arrival of the three student interns whose first task was to add
comments to all existing abstractions as they learnt what the
abstractions did.

ALA-based development and perfective maintenance are
identical in nature, and lead to a generalised iterative and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

0

20

40

60

80

100

120

140

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
o

m
m

it
s/

m
o

n
th

 p
er

 a
b

st
ra

ct
io

n

Months Since Creation

Domain Abstractions (left axis)

Programming Paradigms (left axis)

Application (right axis)

Fig. 4: Average Monthly Commits during ALA-DMA
development by abstraction type since creation

agile [9] development process to answer RQ1, as shown in
Fig. 5. The shaded boxes highlight the differences with the
up-front design process of Fig. 2. Fig. 2 has an additional
analysis step to emphasise that it is about the design of a
set of abstractions to enable the expression of requirements.
Fig. 5 has a validation step to emphasis that each user
story is executed and tested. Also, any new abstractions that
are introduced are built immediately. The primary artefact
being incremented is the application diagram. The starting
set of domain abstractions (the core output of the up-front
design) is more stable because they are independent of specific
requirements. Domain abstractions can continue to be added
or refined, but with decreasing frequency as the iterations
progress. This happens despite that these abstractions are
continuously being reused to express new requirements.

Start Iterating

Pick Requirement

Validation

Next Iteration

Exist
appropriate programming

paradigms?

Exist
appropriate domain

abstractions?

Yes

Build new
programming

paradigms

Build new domain
abstractions

No

No

Wire instances of
domain abstractions to
describe requirement

Yes

Fig. 5: A generalised ALA development process

IV. MAINTAINABILITY METRICS AND ALA’S IMPACT

A systematic literature review (SLR) [23] of 102 primary
studies was conducted to identify suitable metrics for mea-
suring maintainability. Due to space restrictions, details of
the SLR protocol, as well as extended findings can be found
in [24] (pages 19-25).

In the 1970s, procedural programming related metrics like
McCabe’s Cyclomatic Complexity [17] and Halstead Volume
[25] were proposed. As object-oriented programming grew

in popularity in later decades, corresponding maintainability
metrics, like CK metrics [16], the suites proposed by Li and
Henry [26], Chen and Lum [27], Lorenz and Kidd [28] and
the MOOD metrics [29], gained popularity. In the 2000s,
focus shifted to the use of machine learning (ML) techniques
to measure or predict maintainability, using techniques like
Artificial Neural Networks [30] and Multivariate Regression
Models [31]. More recently, ML techniques link maintainabil-
ity measurements with code smells [32].

We classified maintainability metrics into four categories,
where each category relates to measuring maintainability
at specific phases in the Software Development Life Cycle
(SDLC). Architecture-level metrics measure maintainability in
early or high-level design phases and include seminal works
like SAAM [33] and ALMA [34]. Design-level metrics assess
maintainability in low-level design comprising diagrams and
documentation linking classes, interfaces and their relation-
ships in object-oriented programs. CK [16] and MOOD [29]
metric suites fall in this category. Code-level metrics are used
over detailed code implementations and include metrics such
as Information Flow [35] and Nesting Level [36]. Process-
level metrics focus on the subsequent maintenance of software
that has already been deployed and includes metrics like
Lines of Code (LOC) changed [37]. Progressively applying
these metrics results in increasing and more accurate overall
assessment of maintainability.

The ISO 25010 [3] family of standards and more specifically
the ISO 25023 [6] standard provides several quantitative mea-
sures for the assessment of the five sub-characteristics of main-
tainability: modularity, reusability, analysability, modifiability
and testability. However, some of the ISO 25023 measures
are very abstract and do not apply directly to modern object-
oriented code bases. For instance, in measuring modularity,
ISO 25023 does not define how modular code should be
arranged, and so we can use the CBO measure which explicitly
defines the coupling between objects and classes.

Tab. II shows a summary of our answer to RQ2. It con-
tains the refinement of the ISO 25023 measures for each
maintainability sub-characteristic into more widely-used and
better-known metrics that are easier to use due to the avail-
ability of tools. For some measures, such as the coupling of
components for modularity and coding rules conformity for
reusability, we identified specific metrics like CBO and layer
violation, respectively, which provide equivalent and more
specific measurements. For some measures, such as reusability
of assets, we identify a combination of metrics such as CBO,
LCOM, WMC and NOC for a more detailed analysis. For
sub-characteristics like analysability and testability, no one-
to-one or one-to-many relationships can be identified between
ISO 25023 measures and available metrics. Therefore, a set
of refined metrics was used to replace the set of ISO 25023
measures for these sub-characteristics. Finally, for modifiabil-
ity, ISO 25023 measures are directly applicable to any code
base, so no refinement was required.

V. MAINTAINABILITY EVALUATION OF ALA
To answer RQ3, we first carried out an initial qualitative

analysis of ALA using the maintainability metrics identified

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Sub-characteristic ISO 25023 measure Refined measures

Modularity Coupling of components CBO (Coupling Between Object Classes) [16]. CBO explicitly shows the relations between
classes and interfaces, which gives an intuitive reflection of whether a component has coupling
with others.

Cyclomatic complexity
adequacy

CC (Cyclomatic Complexity) [17]. This metric reflects the complexity of the control flow in a
function or a class.

Reusability Reusability of assets

CBO (Coupling Between Objects Classes). Excessive coupling weaken the encapsulation of a
class and inhibits reuse [18].
LCOM (Lack of Cohesion Methods). If a method refers to more external variables, it is more
specific to the application and less reusable [16].
WMC (Weighted Methods per Class). A class with a larger number of methods demonstrates
more specific functionality, limiting potential reuse [19]. A class with a single and simple
responsibility has a higher chance to be reused.
NOC (Number of Children). More children means more reuse [16]. In ALA, this indicates
interfaces reusability, as there is no class inheritance.
IT (Instantiated Times). The actual reused times of a class.

Coding rules conformity LV (Layer Violation) [20]. The layered architecture creates unidirectional downwards dependen-
cies in ALA. Higher layer violations means decreased coding rules conformity.

Analysability∗

System log completeness

Diagnosis function
effectiveness

Diagnosis function
sufficiency

CBO (Coupling Between Objects Classes). This metric is used for measuring the ripple effects
of any changes on a class or an interface [16].
LCOM (Lack of Cohesion Methods). Similar to CBO, but stands at the methods level. A method
references lesser external variables has lesser side effects when modified, and so it has higher
analysability [16].
LOC (Lines of Code) [21]. If an asset had more lines of code, the difficulty of analysis activities
might increase.
CP (Commenting Percentage) [22]. Proper comments help maintainers identify where to make
a change, enhancing analysability.

Modifiability
Modification efficiency

No changes required as these measures are directly applicable to any code base.Modification correctness
Modification capability

Testability∗

Test function
completeness

Autonomous testability

Test restartability

CBO (Coupling Between Objects Classes) [16]. Less coupling with other components makes it
easier to write a unit test case and run it.
LOC (Lines of Code) [21]. A class with a bigger size is generally harder to test.
WMC (Weighted Methods per Class) [16] measures the cyclomatic complexity of a class. A
higher value of WMC means the class is more complex, and requires more effort to test.
LCOM (Lack of Cohesion Methods) [16]. Similar with CBO, but stands at the method level
inside a class. A method that references fewer external variables is easier to test, as less conditions
need to be considered.

TABLE II: Mapping ISO 25023 measures for maintainability sub-characteristics to well-known metrics. (∗No one-to-one
relationships could be established between Analysability and Testability measures and known metrics.)

in Sec. IV. Subsequently, we carry out a deeper, quantitative
analysis of ALA based on the ALA-DMA case study.

A. An Initial Qualitative Assessment of ALA

Fig. 6 summarises the results of an initial assessment of
ALA using the refined metrics from Tab. II. Modularity is
significantly high due to ALA’s “zero coupling” mechanism
and single responsibility of domain abstractions. Reusability
is also high, because all the domain abstractions and program-
ming paradigms are designed to be reused. Analysability is
assessed to be low overall. ALA focuses on the architectural
level only, which equates to external analysabilty (measured
only by CBO). External analysability is expected to be high,
again because of zero coupling. ALA has no constraints that
affect internal analysability (the code inside domain abstrac-
tions) except for a relatively high limit of 500 LOC per
abstraction. Also, the code inside ALA abstractions is highly
cohesive, which increases internal coupling. However, with
zero external coupling, the internal code of each abstraction is
like a separate program. Internal analysability inside a small
but independent program is not considered to be a problem
commercially. However, it is expected that the measures of
internal analysability like LOC, LCOM and CP, will be low
in an ALA application. Modifiability is also hard to assess

at this stage, and since it depends on modularity (high) and
analysability (low) [6], so we infer it as medium. Testability is
high, because test functions and criteria are easy to establish
and run over domain abstractions. Moreover, it is effortless to
achieve test goals due to the single responsibility of domain
abstractions. Overall, this qualitative analysis and small-scale
experiments conducted by our team showed that ALA holds
promise from a maintainability perspective.

B. Quantitative Analysis

We assessed any maintainability improvements in ALA-
DMA by comparing it with Legacy-DMA, which has been
maintained for over two decades. Tab. III compares the two
applications on age, development team’s size, code base size
in SLOC, and development time in man-years.

Project age team size SLOC man-years
Legacy-DMA 20+ 1 70k 12
ALA-DMA 2 1-3 55k 2

TABLE III: Legacy-DMA vs ALA-DMA

1) NDepend Dependency Graphs: NDepend [38] visu-
alises dependencies between classes and interfaces. Fig. 7

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

ALA Characteristics

CC
Single-responsibility domain abstractions

CBO
Zero intra-layer Coupling

LCOM
Dependent on implementation of domain abstractions

WMC
Cyclomatic complexity of methods is less than that of classes

NOC
Significantly high for programming paradigms

IT
All domain abstractions instantiated multiple times

LV
Restricted responsibility of layers, theoretically 0

LOC
Implementation dependent: reasonable for single-responsibility domain abstractions

CP
Implementation dependent: well-commented domain abstractions

Modifiability:
Difficult to Assess at architectural level; dependent on modularity and analysability

Modularity
High

Reusability
High

Analysability
Low

Testability
High

Modifiability
Medium

Fig. 6: A qualitative assessment of ALA’s support for
maintainability sub-characteristics based on ALA principles

and Fig. 8 show partial dependency graphs for ALA-
DMA and Legacy-DMA, respectively. The ALA graph is
clipped to about half its size vertically. Legacy-DMA’s
dependency graph was both much larger and exponen-
tially denser, due to which Fig. 8 only includes a
small clipped version. Complete graphs can be down-
loaded from https://github.com/johnspray74/ALAExample/
tree/master/Application/Documents/NDependDiagrams.

The ALA-DMA dependency graph is well-organised with
dependencies flowing downwards from the application di-
agram to the classes (domain abstractions), which in turn
depend on programming paradigms (such as IUI as shown in
Fig. 7). In contrast, the dependency graph for Legacy-DMA
shows thousands of dependencies criss-crossing in the back-
ground resembling the big ball of mud pattern. Unsurprisingly,
NDepend was unable to lay out the graph in layers.

As discussed in Sec. II-B, good dependencies flow from
more concrete artifacts to more abstract artifacts, such as from
domain abstractions to programming paradigms. Following
this definition, if we remove the good dependencies from both
diagrams to get an indication of coupling, then Fig. 7 would
have connections at all. While we can assume that several lines
in Legacy-DMA’s graph might be removed, we expect that the
graph would still look much the same.

2) Modularity: Modularity can be measured via the com-
ponent coupling (CC and CBO) and cyclomatic complexity
adequacy measures (see Tab. II). CBO includes both afferent
coupling and efferent coupling that relate to, respectively, the
number of components that depend on a component and the
number of components a component depends on. While ALA
distinguishes between good and bad dependencies, the CBO
metric does not. Fig. 9 and 10 plot afferent and efferent
coupling for both applications. ALA-DMA shows a marked
improvement in afferent coupling and similar efferent coupling
with lesser components having a high number of dependencies.
The middle part of Fig. 10 shows the good dependencies
between domain abstractions and programming paradigms.
Overall CBO is lower for ALA-DMA.

Fig. 7: A Partial Dependency Graph of ALA-DMA

Fig. 8: A Partial Dependency Graph of Legacy-DMA

CC is the ratio of the components implemented indepen-
dently to those designed to be independent [6]. For ALA-
DMA, this ratio is 100%, because there are no intra-layer
dependencies between abstractions. For Legacy-DMA, CC
cannot be measured because it is impossible to identify
independent components from the original design of the
application, which was constructed well over 20 years ago.

https://github.com/johnspray74/ALAExample/tree/master/Application/Documents/NDependDiagrams
https://github.com/johnspray74/ALAExample/tree/master/Application/Documents/NDependDiagrams

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

0 1 2 3 4 5+
0

20

40

60

80

100

10

32

16
8 6

27

2

82

3 2 0
11

Number of Components

%
of

C
la

ss
es

Legacy
ALA

Fig. 9: Comparison of Afferent Coupling

0 1 2 3 4 5+
0

20

40

60

80

100

18 22
11 7 5

37

18 17 17 16 16 16

Number of Components

%
of

C
la

ss
es

Legacy
ALA

Fig. 10: Comparison of Efferent Coupling

Nevertheless, ALA-DMA can be observed to be significantly
more modular than the legacy application.

For cyclomatic complexity adequacy, the mean cyclomatic
complexity values for ALA-DMA and Legacy-DMA are
8.32 and 27.83, respectively. ALA-DMA, therefore, shows a
marked improvement in cyclomatic complexity.

Overall, this quantitative analysis concurs with the qualita-
tive analysis, presented in Fig. 6, and we conclude that ALA
helps produce code bases with high modularity.

3) Reusability: Reusability is measured using reusability
of assets and coding rules conformity [6]. For reusability of
assets, we identified CBO, LCOM, WMC, NOC and IT as
suitable metrics. The first three aim to measure the possibility
of reuse of assets, while the last two measure the actual reuse
of assets. CBO measurements were reported in the modularity
section, so we focus now on the other metrics.

Fig. 11 and 12 present the LCOM and WMC measurements
for the two code bases. High LCOM and WMC values
increase the complexity of a class, which limits its potential
reuse [16]. The LCOM results indicate that ALA-DMA has
lower reusability. On the other hand, the WMC results show
that ALA-DMA has higher reusability. This result is, however,
not a contradiction: LCOM measures class-level reusability
whereas WMC measures method-level reusability.

Fig. 13 and 14 present the NOC and IT measurements,
respectively. As inheritance is not used in ALA, NOC simply
represents the number of interface implementations. A greater
NOC value indicates greater reuse [16]. NOC measurements
show that the percentages of reused interfaces and ancestor
classes are approximately identical for the two code bases.
The IT metric provides the actual number of classes that have
been instantiated. We can see that ALA-DMA involves higher
reuse of classes.

For coding rules conformity, we utilise the layer violation
and circular dependency violation metrics, summarised in

0-0.2 0.21-0.4 0.41-0.6 0.61-0.8 0.81-1
0

20

40

60

80

100

50

4 8
14

2427

6

34 31

2

Proportion of Externally-Referencing Methods

%
of

C
la

ss
es

Legacy
ALA

Fig. 11: Lack of Cohesion in Methods (LCOM) Comparison

0-20 21-40 41-60 61-80 81-100 100+
0

20

40

60

80

100

68

14
6 5 2 6

95

3 0 2 0 0

Mean Method Cyclomatic Complexity

%
of

C
la

ss
es

Legacy
ALA

Fig. 12: Comparison of Weighted Methods per Class (WMC)

Tab. IV. The Layer violation of ALA is zero due to the absence
of bad dependencies (discussed in Sec II-B). On the other
hand, the Legacy-DMA has 141 circular dependencies among
its 449 classes, with 68 correlated classes. ALA, therefore,
scores significantly higher on coding rules conformity.

Code Base Metric Result Coding Rule Conformity
ALA LV 0% 100%

Legacy CDV 15.14% 84.86%

TABLE IV: Coding Rules Conformity Results

As estimated in Fig. 6, ALA scores higher on reusability
with a 13% mean improvement over the five metrics.

A “number of times instantiated” metric was computed
much later when ALA-DMA was almost complete and com-
parable to legacy-ALA in terms of implemented features.
This is a manual count of the number of instantiations of
classes and interfaces. The average number of instantiations
of domain abstractions and programming paradigm interfaces
in ALA-DMA was 11.7 and 42, respectively. In comparison,
the average number of instantiations of classes and interfaces
in Legacy-DMA was 2.5 and 7, respectively.

4) Analysability: The metrics CBO, LCOM, LOC and CP
(Tab. II) measure two aspects: the ease of locating the ripple
effects of an intended change, and the ease of locating the
parts with deficiencies or causes of failure.

Ripple effects of changes are directly associated with the
extent of coupling. The internal coupling is measured by
LCOM, which emphasises the methods and properties of a
class. External coupling is measured by CBO, which considers
dependencies between classes. These two metrics have been
discussed earlier, and the results show that ALA-DMA has

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

0 1-10 11-20 21-30 31-40 41-50
0

20

40

60

80

100
82

14
1 1 0 1

85

8 5 2 0 0

Number of Children

%
of

C
la

ss
es

Legacy
ALA

Fig. 13: Comparison of Number of Children (NOC)

0 1 2-10 11-20 20+
0

20

40

60

80

100

30
36 31

2 24

35

52

8
2

Number of Times Instantiated

%
of

C
la

ss
es

Legacy
ALA

Fig. 14: Comparison of Instantiated Times (IT)

better external analysability, whereas Legacy-DMA has better
internal analysability.

The ease of locating deficiencies is measured by LCOM,
LOC and CP. LCOM is useful here because failures of assets
usually occur due to internal defects. Fig. 15 and Fig. 16
show the LOC and CP measurements for the two code bases.
LOC measurements demonstrate that ALA-DMA is more
analysable, as classes have fewer lines of code. For CP,
excessively low and high CP values indicate low analysability.
Compared to the average commenting percentage of 19% in
various open source projects [39], ALA-DMA had a much
higher mean value of 33% and Legacy-DMA had a consider-
ably lower mean value of 14%.

0-20 21-40 41-60 61-80 81-100 100+
0

20

40

60

80

100

56

8 8 6 4
18

68

24

0 5 2 2

Lines of Code

%
of

C
la

ss
es

Legacy
ALA

Fig. 15: Comparison of Lines of Code (LOC)

Overall, ALA offered a mean 7% improvement (over the
five metrics used) over the legacy application. This result
differs from our initial qualitative analysis presented in Fig. 6,
where we inferred that ALA might reduce analysability,

5) Modifiability: The key measures for modifiability are
modification efficiency, modification capability and modifica-
tion correctness. The correctness of modifications needs to be
tracked over the long term and therefore related measurements
were not conducted. Modification efficiency and capability
were computed over the implementation of the functional

0-10 11-20 21-30 31-40 41-50 50+
0

20

40

60

80

100

77

4 2 2 2
1315 13

26
16 16 15

% of Lines

%
of

C
la

ss
es

Legacy
ALA

Fig. 16: Comparison of Commenting Percentage (CP)

requirement sets F1–F5 from Sec. II-A. Fig. 17 illustrates
the decomposition of a sample user story into modification
tasks for ALA-DMA. Fig. 18 shows a comparison of the
time taken by the modification tasks for four additional user
stories. Overall, the legacy application required 39 hours for
completing these four user stories while ALA-DMA required
56.

1 2 3 4 5 6 7 8
0

5

10

1

3
4

3
2

3

5

8

1
2

4
2.5

1.5 2
3

10

Task

H
ou

rs

Estimated Time
Actual Time

Fig. 17: Modification Efficiency for a sample user story

3 4 5 6
0

10

20

30

0

8

32

16

1 2

24

12

User Story

H
ou

rs

ALA
Legacy

Fig. 18: Comparison of Estimation of Modifications

Modification capability is computed as the proportion of
items modified within a specified duration to the number of
items required to be modified within that duration. In sample
measurements taken over two larger user stories that were
implemented simultaneously in both applications, Legacy-
DMA took an average of 29 hours to modify each item
whereas ALA-DMA required 32.3 hours. ALA-DMA had a
10% lower modification capability than the legacy application.

We see that ALA exhibits low modifiability at the 3-
month point in the development, a result that differs from
the initial assessment where ALA was predicted to have
medium modifiability (Fig. 6). However, Fig. 19 gives an
indication of modifiability for ALA-DMA over a longer 16-
month development period. It shows the percentage of com-
mits to the applications layer where we directly implement

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16P
er

ce
n

t
o

f
co

m
m

it
s

to
 A

p
p

lic
at

io
n

 la
ye

r

Month

Fig. 19: Percentage monthly commits to the application layer

requirements. At the 3-month point, less than 10% of com-
mits were to the application itself, with the rest going into
domain abstractions and programming paradigms. After 16
months this had increased to 55%. It should be noted that
the application accounts for only 10% of the total code. The
domain abstractions and programming paradigms make up the
remaining 90% of the code.

6) Testability: We measured testability using the CBO,
LCOM, WMC and LOC metrics (Tab. II), all of which have
been discussed in the previous sub-sections. High-coupling
requires more testing effort and a high LCOM value makes
components more difficult to test [16]. Based on these previous
measurements, ALA-DMA has higher testability according to
CBO and lower testability according to LCOM. WMC and
LOC are correlated with the size and complexity of a class.
Complexity correlates with the time needed to test the class
[16]. Both these metrics show that ALA-DMA has higher
testability than Legacy-DMA. A breakdown of the metrics
shows that 60% of ALA’s assets have high testability, whereas
in the legacy application the number was 47%. Overall, our
findings support our initial assessment in Fig. 6 that ALA
achieves high testability.

C. Analysis, Discussion and Summary

Sec. V-B helps us answer RQ3 and shows that ALA-DMA
showed improvements in all sub-characteristics of maintain-
ability except modifiability, which is dependent on modularity
and analysability. Interestingly, we found ALA to have much
higher modularity and analysability than the legacy applica-
tion. A deeper analysis was performed to identify the reasons
for the lower modifiability measurement. We recorded the kind
of tasks carried out during perfective maintenance and any
differences in the time taken to perform similar tasks over the
course of the project. We found that there were two primary
reasons for the lower modifiability, which are discussed below.

1) Construction of new abstractions: Perfective mainte-
nance in ALA requires minimal effort if new user stories
can be implemented by wiring instances of existing domain
abstractions in the application layer. However, being a rela-
tively new code base at the time of the measurement, several
user stories required the creation of new domain abstractions.

Boehm [40] states that developing reusable assets usually
increases short-term effort.

Tab. V shows the new domain abstractions that were created
when the two user stories used for the measurement were
implemented, each of which required additional effort.

User story New Abstractions Implemented
Connect to device DeviceIdSCP

Display sessions IIterator, ListOfFiles, SelectExternal, FileSessions,
ConvertIteratorToTab.

TABLE V: Abstractions created for new requirements

2) Complexity of the application diagram: Tab. VI il-
lustrates the task efficiency of the “Display sessions” user
story. The last task (T8) involves finalising the wiring in the
application diagram. Similar measurements were taken for all
user stories. A few trends were observed. More complex user
stories took, as expected, longer to wire than simpler user
stories. Also, developer estimates related to T8 (or similar
tasks in other user stories) were almost always too optimistic.

T1 T2 T3 T4 T5 T6 T7 T8
Estimated(hrs) 1 3 4 3 2 3 5 8

Actual(hrs) 1 2 4 2.5 1.5 2 3 10
Efficiency(%) 100 150 100 120 133 150 167 80

TABLE VI: Efficiency of completing tasks in User Story 2

It took longer than expected to carry out the manual wiring
of the application diagram in the later stages of development.
This was because, as the diagram went over the ALA size
constraint, keeping the manually generated wiring code in sync
with the wiring diagram required more care than expected.
This factor was later solved by auto-generating the wiring
code from the diagram. Furthermore, the application diagram
was separated into user story abstractions by creating an addi-
tional intermediate layer between the application and domain
abstraction layers, such as a “plug-in” abstractions layer. These
two solutions are key future directions of this work.

Overall modifiability can also be indicated by a comparison
of the total effort for ALA-DMA and Legacy-DMA. ALA-
DMA’s development consisted of a 2-week up-front design
by a senior engineer and the master’s student, a 3-month
development by the master’s student alone, and two additional
3-month student internships of 3 students each. Approximately
2 man-years of effort in total have been spent. At this time
about 90% of the functionality of the Legacy-DMA has been
completed and tested. By comparison, the Legacy-DMA has
conservatively required 12 man-years of accumulated effort.

ALA-DMA’s application diagram contains about 2200
nodes and 3200 wirings, equivalent to about 5.4 KLOC (one
line of code per node and one per wiring) representing 10%
of the total code. Maintenance increasingly takes place in this
10% of the code, as opposed to potentially 100% of the code
in the legacy-DMA.

The factors discussed above indicate that ALA has higher
modifiability over the long-term. The domain abstractions and
programming paradigms layers have become more stable and
maintenance is carried out increasingly in the application layer.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

Reusability would increase due to the same reason. Modularity
and testability are expected to remain unaffected over the
long-term, as these relate to individual abstractions that have
capped sizes in ALA. Analysability is expected to remain
unaffected, provided the ALA constraints are also applied
in the application layer when added features cause a single
diagram to become too large.

D. Threats to Validity

A number of provisions were made to mitigate the effects
of possible threats to validity [41]. Conclusion validity was
achieved through a statistical analysis of the quantitative
data. Only statistically significant results were reported in
Sec. V-B. We also note that the two code bases being
compared were developed at different times, and it may be
difficult to separate ALA’s maintainability benefits from the
deterioration in maintainability of the Legacy-DMA. This
factor can be addressed by ongoing experiments on a wider
range of systems, which is beyond the scope of this article.
Internal and external validity was achieved by documenting
progress every day over the duration of the project. Logs
were appraised weekly to ensure that a systematic process
of development, consistent with both ALA constraints and
Datamars’ Scrum-based development process, was followed.
The development of the two applications were carried out by
two independent teams. The findings of the qualitative analysis
of ALA’s effect on maintainability were triangulated with a
deeper quantitative analysis to strengthen the overall findings
of the article. For data validity, NDepend was used out-of-
the-box on both applications. Any bias emanating from the
fact that members of the research team developed ALA-DMA
was mitigated by ensuring the assessments of suitability and
effectiveness were carried out independently by the students
and added to the daily logs.

VI. CONCLUSIONS

We tested the effectiveness of Abstraction Layered Archi-
tecture (ALA) [2] in achieving high maintainability through
developing a commercial C# desktop application for Datamars,
New Zealand. This experience led to proposing a generalised,
iterative process for developing maintainable code using ALA.
We also conducted a systematic literature review to cate-
gorise available metrics to measure each of the five sub-
characteristics of maintainability, as defined by ISO 25010 and
ISO 25023 [3], [6]. Using this categorisation, we provide an
initial qualitative assessment of ALA, followed by a deeper
quantitative analysis where the metrics were applied to the
commercial code base we developed.

We found that ALA helped achieve higher modularity,
reusability, analysability and testability than the conventional
strategies used at Datamars, but lower modifiability in the short
term. Reusability and modifiability did measurably increase
over the long term. The growing complexity of the ALA
application diagram as it goes over the ALA size constraint can
reduce analysability in the long term. The ALA approach is to
create an additional intermediate layer between the application
and domain abstraction layers to address this issue, and this

remains as a key future direction of this work. Another project
relating to generating code automatically from the application
diagram is currently underway.

For further scalability, we are exploring the use of node
clustering methods to simplify the application diagram and
the organisation of domain abstractions to make them easier
to identify and use. Another interesting future direction is
using machine-learning approaches to identify abstractions in
conventional code bases to aid in refactoring such code bases
into ALA-compliant code bases. In general, there is a need to
clearly articulate how domain abstractions can be identified in
any ALA project. This will require systematically collecting
feedback from experienced developers and engineers working
on a range of projects. Gathering detailed empirical evidence
from developers on how ALA supports maintainability, as
well as carrying out detailed comparisons with architectural
alternatives such as pattern-oriented software architecture [42],
microservices [14] and refactoring [43] approaches are both
critical future directions. Analysing the impact of the zero
coupling on other quality requirements remains an interesting
next step. Distributing ALA applications onto multiple devices
is another future direction that requires elaboration of the
physical and process views of the architecture.

REFERENCES

[1] H. Krasner, “The cost of poor quality software in the US: A 2018 report,”
Consortium for IT Software Quality, Tech. Rep, vol. 10, 2018.

[2] J. Spray and R. Sinha, “Abstraction layered architecture: Writing
maintainable embedded code,” in European Conference on Software
Architecture, pp. 131–146, Springer, 2018.

[3] BSI ISO, “BS ISO/IEC 25010:2011 Systems and software engineering
Systems and software Quality Requirements and Evaluation (SQuaRE)
System and software quality models,” BSI Standards Publication, 2011.

[4] K. B. M. Noor, “Case study: A strategic research methodology,” Amer-
ican Journal of Applied Sciences, vol. 5, no. 11, pp. 1602–1604, 2008.

[5] J. de A.G. Saraiva, M. S. de Frana, S. C. Soares, F. J. Filho, and
R. de Souza, “Classifying metrics for assessing object-oriented software
maintainability: A family of metrics catalogs,” Journal of Systems and
Software, vol. 103, pp. 85 – 101, 2015.

[6] BSI ISO, “BS ISO/IEC 25023:2016 Systems and software engineering
Systems and software Quality Requirements and Evaluation (SQuaRE)
Measurement of system and software product quality,” BSI Standards
Publication, 2016.

[7] P. B. Kruchten, “Architectural Blueprints - The 4+1 view model of
architecture,” IEEE Software, vol. 12, no. 6, pp. 42–50, 1995.

[8] S. Balaji and M. S. Murugaiyan, “Waterfall vs. V-Model vs. Agile:
A comparative study on SDLC,” International Journal of Information
Technology and Business Management, vol. 2, no. 1, pp. 26–30, 2012.

[9] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall, 2002.

[10] K. Schwaber, “Scrum development process,” in Business object design
and implementation, pp. 117–134, Springer, 1997.

[11] R. E. Johnson, “Frameworks=(components+patterns),” Communications
of the ACM, vol. 40, no. 10, pp. 39–42, 1997.

[12] E. Evans, Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004.

[13] S. Apel, D. Batory, C. Kästner, and G. Saake, “Software product lines,”
in Feature-Oriented Software Product Lines, pp. 3–15, Springer, 2013.

[14] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116,
2015.

[15] U. Kaur and G. Singh, “A review on software maintenance issues and
how to reduce maintenance efforts,” International Journal of Computer
Applications, vol. 118, no. 1, 2015.

[16] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6,
pp. 476–493, 1994.

[17] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, no. 4, pp. 308–320, 1976.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

[18] V. Laing and C. Coleman, “Principal Components of Orthogonal Object-
Oriented Metrics,” White Paper SATC-323-08-14, NASA Goddard Space
Flight Center, Greenbelt, Maryland, vol. 20771, 2001.

[19] B. M. Goel and P. K. Bhatia, “Analysis of reusability of object-
oriented system using CK metrics,” International Journal of Computer
Applications, vol. 60, no. 10, pp. 32–36, 2012.

[20] S. Sarkar, G. M. Rama, and R. Shubha, “A method for detecting and
measuring architectural layering violations in source code,” in 2006 13th
Asia Pacific Software Engineering Conference (APSEC’06), pp. 165–
172, IEEE, 2006.

[21] A. J. Albrecht and J. E. Gaffney, “Software function, source lines of
code, and development effort prediction: a software science validation,”
IEEE Transactions on Software Engineering, no. 6, pp. 639–648, 1983.

[22] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source code
comments,” in International Conference on Program Comprehension
(ICPC), pp. 83–92, IEEE, 2013.

[23] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering–
a systematic literature review,” Information and Software Technology,
vol. 51, no. 1, pp. 7–15, 2009.

[24] X. Cheng, “Abstraction layered architecture: Improvements in maintain-
ability of commercial software code bases,” Master’s thesis, Auckland
University of Technology, 2020.

[25] M. H. Halstead et al., Elements of software science, vol. 7. Elsevier
New York, 1977.

[26] W. Li and S. Henry, “Object-oriented metrics that predict maintainabil-
ity,” Journal of Systems and Software, vol. 23, no. 2, pp. 111–122, 1993.

[27] J. Chen and J. Lu, “A new metric for object-oriented design,” Informa-
tion and Software Technology, vol. 35, no. 4, pp. 232–240, 1993.

[28] M. Lorenz and J. Kidd, Object-oriented software metrics: a practical
guide. Prentice-Hall, Inc., 1994.

[29] F. B. Abreu and R. Carapuça, “Object-oriented software engineering:
Measuring and controlling the development process,” in International
Conference on Software Quality, vol. 186, pp. 1–8, 1994.

[30] K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Application of
artificial neural network for predicting maintainability using object-
oriented metrics,” Transactions on Engineering, Computing and Tech-
nology, vol. 15, pp. 285–289, 2006.

[31] Y. Zhou and H. Leung, “Predicting object-oriented software main-
tainability using multivariate adaptive regression splines,” Journal of
Systems and Software, vol. 80, no. 8, pp. 1349–1361, 2007.

[32] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lu-
cia, “Detecting code smells using machine learning techniques: are we
there yet?,” in International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp. 612–621, IEEE, 2018.

[33] R. Kazman, L. Bass, G. Abowd, and M. Webb, “SAAM: A method
for analyzing the properties of software architectures,” in International
Conference on Software Engineering, pp. 81–90, IEEE, 1994.

[34] P. O. Bengtsson, N. Lassing, J. Bosch, and H. Van Vliet, “Architecture-
level modifiability analysis (ALMA),” Journal of Systems and Software,
vol. 69, no. 1-2, pp. 129–147, 2004.

[35] S. Henry and D. Kafura, “Software structure metrics based on informa-
tion flow,” IEEE Transactions on Software Engineering, no. 5, pp. 510–
518, 1981.

[36] W. A. Harrison and K. I. Magel, “A complexity measure based on nesting
level,” ACM Sigplan Notices, vol. 16, no. 3, pp. 63–74, 1981.

[37] R. D. Banker, R. J. Kauffman, and R. Kumar, “An empirical test of
object-based output measurement metrics in a computer aided software
engineering (case) environment,” Journal of Management Information
Systems, vol. 8, no. 3, pp. 127–150, 1991.

[38] P. Smacchia, “NDepend,” Product description on company website at
http://www.ndepend.com, 2007.

[39] O. Arafat and D. Riehle, “The commenting practice of open source,” in
ACM SIGPLAN Conference Companion on Object Oriented Program-
ming Systems Languages and Applications, pp. 857–864, ACM, 2009.

[40] B. Boehm, “The COCOMO 2.0 software cost estimation model,” Amer-
ican Programmer, 1996.

[41] R. Feldt and A. Magazinius, “Validity threats in empirical software
engineering research-an initial survey.,” in Seke, pp. 374–379, 2010.

[42] F. Buschmann, K. Henney, and D. Schimdt, Pattern-Oriented Software
Architecture: On Patterns And Pattern Language, vol. 5. Wiley, 2007.

[43] M. Fowler, Refactoring: improving the design of existing code. Addison-
Wesley Professional, 2018.

John Spray is Embedded Software Team Lead at
Datamars. John did a degree in engineering before
software engineering was a thing and started by
writing a compiler in the days when there were
none. Having seen a plethora of patterns, principles
and styles of software architecture enter the popular
memes, John has a unique industry perspective on
the human struggle to understand this new discipline.
His goal is to unify them into a single guiding theory
to help others to organize their code. There’s some-
times a little time left over to fly model airplanes

and play tennis.

Roopak Sinha (Ph.D. ’09, MCE 16, BE (Hons)
03, SFHEA 17, SMIEEE) is the Head of the De-
partment of Computer Science and Software En-
gineering at Auckland University of Technology,
New Zealand. Roopak’s primary research inter-
est is Systematic, Standards-First Design of Com-
plex, Next-Generation Software applied to domains
like Internet-of-Things, Edge Computing, Cyber-
Physical Systems, Big Data, Home and Industrial
Automation, and Intelligent Transportation Systems.
He contributes actively to international standards

on software and systems. He also works with New Zealand companies
to systematically reduce standards-compliance costs in software-intensive
systems. He has previously worked as an academic at INRIA Grenoble, France
and The University of Auckland, New Zealand.

Arnab Sen received a BSc (2019) in Computer
Science from The University of Auckland and an
MPhil (2021) in Computer Science from Auckland
University of Technology. His research interests
include the optimisation of software architectures
for long-term maintainability, and the creation of
software development tools to help improve pro-
ductivity. Of particular interest to him is exploring
the impact of novel software tools and architectures
in industrial settings. He is currently working as a
Software Developer at the content management and

insights company Pingar.

Xingbin Cheng is a mobile developer at Datamars
(New Zealand). Before he started working for Data-
mars, Xingbin got a master’s degree from Auckland
University of Technology in computer and infor-
mation science. Prior to that, he studied in North-
eastern University and got his bachelor’s degree in
computer science and technology, and worked for
a few companies in China. Xingbin’s interests are
software architecture and computer graphics. His
research fields are software maintainability, includ-
ing sub-characteristics i.e. modularity, reusability,

analysability, modifiability and testability. He also devotes to improve user
interface rendering in mobile platforms.

	Introduction
	Abstraction Layered Architecture (ALA)
	Development View
	Abstractions, Dependencies and Layers
	Development Process

	Logical View
	Process View
	Executing the Application Diagram

	Physical View
	Comparing ALA with other architectural styles

	Long-term Maintenance of ALA Code bases
	Maintainability Metrics and ALA's Impact
	Maintainability Evaluation of ALA
	An Initial Qualitative Assessment of ALA
	Quantitative Analysis
	NDepend Dependency Graphs
	Modularity
	Reusability
	Analysability
	Modifiability
	Testability

	Analysis, Discussion and Summary
	Construction of new abstractions
	Complexity of the application diagram

	Threats to Validity

	Conclusions
	References
	Biographies
	John Spray
	Roopak Sinha
	Arnab Sen
	Xingbin Cheng

